Alzheimer’s disease (AD), the most prevalent neurodegenerative disorder, continues to pose significant challenges despite advances in anti-amyloid therapies. New research from Harvard Medical School and Washington University School of Medicine, published in Science Translational Medicine, has unveiled a novel therapeutic approach: the use of inhaled xenon gas to modulate microglia and ameliorate disease progression in mouse models of AD.
Microglia, the brain’s resident immune cells, play a dual role in neurodegeneration. While they can clear amyloid-beta (Aβ) plaques and damaged neurons, chronic activation leads to neuroinflammation, contributing to disease progression. Xenon gas, an inert anaesthetic, penetrates the blood-brain barrier and appears to modulate microglia to adopt a “pre-neurodegenerative microglia” (pre-MGnD) state.
Dr. Oleg Butovsky, a senior author of the study, explains, “Xenon inhalation induces microglial activation that enhances amyloid plaque compaction and suppresses neuroinflammation. This therapeutic modulation holds promise for addressing key pathological features of Alzheimer’s.”