Previous image Next image
Back in the old days — the really old days — the task of designing materials was laborious. Investigators, over the course of 1,000-plus years, tried to make gold by combining things like lead, mercury, and sulfur, mixed in what they hoped would be just the right proportions. Even famous scientists like Tycho Brahe, Robert Boyle, and Isaac Newton tried their hands at the fruitless endeavor we call alchemy.
Materials science has, of course, come a long way. For the past 150 years, researchers have had the benefit of the periodic table of elements to draw upon, which tells them that different elements have different properties, and one can’t magically transform into another. Moreover, in the past decade or so, machine learning tools have considerably boosted our capacity to determine the structure and physical properties of various molecules and substances. New research by a group led by Ju Li — the Tokyo Electric Power Company Professor of Nuclear Engineering at MIT and professor of materials science and engineering — offers the promise of a major leap in capabilities that can facilitate materials design. The results of their investigation are reported in a December 2024 issue of Nature Computational Science.
At present, most of the machine-learning models that are used to characterize molecular systems are based on density functional theory (DFT), which offers a quantum mechanical approach to determining the total energy of a molecule or crystal by looking at the electron density distribution — which is, basically, the average number of electrons located in a unit volume around each given point in space near the molecule. (Walter Kohn, who co-invented this theory 60 years ago, received a Nobel Prize in Chemistry for it in 1998.) While the method has been very successful, it has some drawbacks, according to Li: “First, the accuracy is not uniformly great. And, second, it only tells you one thing: the lowest total energy of the molecular system.”