This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes – community reassembly and spatial self-organization – have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.
The structure of plant communities – their composition and diversity – forms the foundation of many ecosystem services on which human well-being crucially depends. These include provisioning services such as food, fresh water, wood, and fiber; regulating services such as flood regulation and water purification; cultural services such as recreation and aesthetic enjoyment; and supporting services such as soil formation, photosynthesis, and nutrient cycling (Duraiappah and Naeem, 2005). These services are at risk due to potential changes in the composition and diversity of plant communities as a result of global warming and the development of drier climates (Harrison et al., 2020). Understanding the factors that affect community structure in varying environments calls for integrated studies of mechanisms operating at different levels of organization, from phenotypic changes at the organism level, through intraspecific interactions at the population level, to interspecific interactions at the community level (Gratani, 2014; Falik et al., 2003; Bertness and Callaway, 1994; Pérez-Ramos et al., 2019). Of these mechanisms, the role of intraspecific interactions in driving community dynamics through spatial self-organization, has hardly been studied (see however Vandermeer and Yitbarek, 2012; Bonanomi et al., 2014; Cornacchia et al., 2018; Zhao et al., 2019; O'Sullivan et al., 2019; Pescador et al., 2020; Inderjit et al., 2021).