Author contributions: R.B. designed research; E.C. and T.L.T. performed research; E.T. analyzed data; J.M. provided mathematical theory; E.C. provided assistance with experiments; and R.B., E.T., J.M., and T.L.T. wrote the paper.
For over 100 y, the scientific community has adhered to a paradigm, introduced by Riemann and furthered by Helmholtz and Schrodinger, where perceptual color space is a three-dimensional Riemannian space. This implies that the distance between two colors is the length of the shortest path that connects them. We show that a Riemannian metric overestimates the perception of large color differences because large color differences are perceived as less than the sum of small differences. This effect, called diminishing returns, cannot exist in a Riemannian geometry. Consequently, we need to adapt how we model color differences, as the current standard, ΔE , recognized by the International Commission for Weights and Measures, does not account for diminishing returns in color difference perception.
The scientific community generally agrees on the theory, introduced by Riemann and furthered by Helmholtz and Schrödinger, that perceived color space is not Euclidean but rather, a three-dimensional Riemannian space. We show that the principle of diminishing returns applies to human color perception. This means that large color differences cannot be derived by adding a series of small steps, and therefore, perceptual color space cannot be described by a Riemannian geometry. This finding is inconsistent with the current approaches to modeling perceptual color space. Therefore, the assumed shape of color space requires a paradigm shift. Consequences of this apply to color metrics that are currently used in image and video processing, color mapping, and the paint and textile industries. These metrics are valid only for small differences. Rethinking them outside of a Riemannian setting could provide a path to extending them to large differences. This finding further hints at the existence of a second-order Weber–Fechner law describing perceived differences.