Researchers at MIT and Caltech have created a nanoengineered material that could be tougher than the likes of kevlar or steel. Made of interconnected carbon “tetrakaidecahedrons,” the material absorbed the impact of microscopic bullets in spectacular fashion.
The study, led by MIT’s Carlos Portela, aimed to find out whether nanoarchitected materials — that is, designed and fabricated at the scale of nanometers — could be a viable path toward ultratough blast shields, body armor and other protective surfaces.
The idea of tetrakaidecahedron-based materials, however, isn’t a new one. The complex 14-sided class of polyhedron (there are about 1.5 billion possible variations) was proposed by Lord Kelvin in the 19th century as theoretically one of the most efficient possible for filling space with duplicates of itself.
If many such polyhedra can be packed into a small space and interconnected, Portela and his colleagues wondered, would they act as an efficient shock absorber? Such materials had been tested with slow deformations but not powerful impacts like you would expect from a bullet or micrometeoroid.