Schneier on Security

submited by
Style Pass
2024-04-02 15:00:04

The threat resides in the chips’ data memory-dependent prefetcher, a hardware optimization that predicts the memory addresses of data that running code is likely to access in the near future. By loading the contents into the CPU cache before it’s actually needed, the DMP, as the feature is abbreviated, reduces latency between the main memory and the CPU, a common bottleneck in modern computing. DMPs are a relatively new phenomenon found only in M-series chips and Intel’s 13th-generation Raptor Lake microarchitecture, although older forms of prefetchers have been common for years.

The breakthrough of the new research is that it exposes a previously overlooked behavior of DMPs in Apple silicon: Sometimes they confuse memory content, such as key material, with the pointer value that is used to load other data. As a result, the DMP often reads the data and attempts to treat it as an address to perform memory access. This “dereferencing” of “pointers”—meaning the reading of data and leaking it through a side channel—­is a flagrant violation of the constant-time paradigm.

The attack, which the researchers have named GoFetch, uses an application that doesn’t require root access, only the same user privileges needed by most third-party applications installed on a macOS system. M-series chips are divided into what are known as clusters. The M1, for example, has two clusters: one containing four efficiency cores and the other four performance cores. As long as the GoFetch app and the targeted cryptography app are running on the same performance cluster—­even when on separate cores within that cluster­—GoFetch can mine enough secrets to leak a secret key.

Leave a Comment