A laboratory experiment captured the pull between two minuscule gold spheres, paving the way for experiments that probe the quantum nature of gravity

Physicists Measure the Gravitational Force between the Smallest Masses Yet

submited by
Style Pass
2021-06-10 22:00:06

A laboratory experiment captured the pull between two minuscule gold spheres, paving the way for experiments that probe the quantum nature of gravity

Physicist Markus Aspelmeyer vividly remembers the day, nearly a decade ago, that a visitor to his lab declared the gravitational pull of his office chair too weak to measure. Measurable or not, this force certainly ought to exist. Ever since the work of Isaac Newton in 1687, physicists have understood gravity to be universal: every object exerts a gravitational force proportional to its mass on everything around it. The visitor’s comment was intended to bring an increasingly fanciful conversation back down to Earth, but Aspelmeyer, a professor at the University of Vienna, took it as a challenge. “My resolution was ‘Okay, I am going to not only measure the gravitational field of this chair, but we are going to go small, small, small!’” he recalls.

The research effort born on that day has now produced its first result: a measurement of the gravitational force between two tiny gold spheres, each about the size of a sesame seed and weighing as much as four grains of rice—the smallest masses whose gravity has been measured to date. The results, published in Nature today, bring physicists one step closer to the distant goal of reconciling gravity with quantum mechanics, the theory underlying all of nongravitational physics.

Leave a Comment