Current neural network algorithms produce impressive results that help solve an incredible number of problems. However, the electronic devices used to

Artificial neurons recognize biosignals in real time -- ScienceDaily

submited by
Style Pass
2021-05-28 06:30:07

Current neural network algorithms produce impressive results that help solve an incredible number of problems. However, the electronic devices used to run these algorithms still require too much processing power. These artificial intelligence (AI) systems simply cannot compete with an actual brain when it comes to processing sensory information or interactions with the environment in real time.

Neuromorphic engineering is a promising new approach that bridges the gap between artificial and natural intelligence. An interdisciplinary research team at the University of Zurich, the ETH Zurich, and the UniversityHospital Zurich has used this approach to develop a chip based on neuromorphic technology that reliably and accurately recognizes complex biosignals. The scientists were able to use this technology to successfully detect previously recorded high-frequency oscillations (HFOs). These specific waves, measured using an intracranial electroencephalogram (iEEG), have proven to be promising biomarkers for identifying the brain tissue that causes epileptic seizures.

The researchers first designed an algorithm that detects HFOs by simulating the brain's natural neural network: a tiny so-called spiking neural network (SNN). The second step involved imple-menting the SNN in a fingernail-sized piece of hardware that receives neural signals by means of electrodes and which, unlike conventional computers, is massively energy efficient. This makes calculations with a very high temporal resolution possible, without relying on the internet or cloud computing. "Our design allows us to recognize spatiotemporal patterns in biological signals in real time," says Giacomo Indiveri, professor at the Institute for Neuroinformatics of UZH and ETH Zur-ich.

Leave a Comment
Related Posts