The human cell is a miserable thing to study. Tens of trillions of them exist in the body, forming an enormous and intricate network that governs every disease and metabolic process. Each cell in that circuit is itself the product of an equally dense and complex interplay among genes, proteins, and other bits of profoundly small biological machinery.
Our understanding of this world is hazy and constantly in flux. As recently as a few years ago, scientists thought there were only a few hundred distinct cell types, but new technologies have revealed thousands (and that’s just the start). Experimenting in this microscopic realm can be a kind of guesswork; even success is frequently confounding. Ozempic-style drugs were thought to act on the gut, for example, but might turn out to be brain drugs, and Viagra was initially developed to treat cardiovascular disease.
Speeding up cellular research could yield tremendous things for humanity—new medicines and vaccines, cancer treatments, even just a deeper understanding of the elemental processes that shape our lives. And it’s beginning to happen. Scientists are now designing computer programs that may unlock the ability to simulate human cells, giving researchers the ability to predict the effect of a drug, mutation, virus, or any other change in the body, and in turn making physical experiments more targeted and likelier to succeed. Inspired by large language models such as ChatGPT, the hope is that generative AI can “decode the language of biology and then speak the language of biology,” Eric Xing, a computer scientist at Carnegie Mellon University and the president of Mohamed bin Zayed University of Artificial Intelligence, in the United Arab Emirates, told me.