We’ve reported on a technology called pulsed plasma rockets (PPRs) here at UT a few times. Several research groups have worked on variations of

Thermal Modeling of a Pulsed Plasma Rocket Shows It Should Be Possible To Create One

submited by
Style Pass
2024-03-31 21:00:09

We’ve reported on a technology called pulsed plasma rockets (PPRs) here at UT a few times. Several research groups have worked on variations of them. They are so popular partly because of their extremely high specific impulse and thrust levels, and they seemingly solve the trade-off between those two all-important variables in space exploration propulsion systems. Essentially, they are an extremely efficient propulsion methodology that, if scaled up, would allow payloads to reach other planets in weeks rather than months or years. However, some inherent dangers still need to be worked out, and overcoming some of those dangers was the purpose of a NASA Institute for Advanced Concepts (NIAC) project back in 2020. 

Originally granted to Howe Industries, a design shop that has received several NIAC grants (including two in 2020 itself), the purpose of this project was to model the design of a fully functional PPR in modeling software to see if the necessary materials and power systems are available for a rocket that can provide 100 kN of thrust and over 5,000 seconds of specific impulse. 

In essence, a PPR takes a fuel pellet made out of some form of fissionable material (in this case, uranium), and zaps it into a plasma, then emits the plasma out the back for a forceful thrust. Rockets with this design can carry much less fuel than standard chemical rockets, but their design must be significantly larger due to the heating constraints put on the system by creating the plasma in the first place.

Leave a Comment