AI Product Management is evolving rapidly. The growth of generative AI and AI-based developer tools has created numerous opportunities to build AI applications. This is making it possible to build new kinds of things, which in turn is driving shifts in best practices in product management — the discipline of defining what to build to serve users — because what is possible to build has shifted. In this letter, I’ll share some best practices I have noticed.
Use concrete examples to specify AI products. Starting with a concrete idea helps teams gain speed. If a product manager (PM) proposes to build “a chatbot to answer banking inquiries that relate to user accounts,” this is a vague specification that leaves much to the imagination. For instance, should the chatbot answer questions only about account balances or also about interest rates, processes for initiating a wire transfer, and so on? But if the PM writes out a number (say, between 10 and 50) of concrete examples of conversations they’d like a chatbot to execute, the scope of their proposal becomes much clearer. Just as a machine learning algorithm needs training examples to learn from, an AI product development team needs concrete examples of what we want an AI system to do. In other words, the data is your PRD (product requirements document)!
In a similar vein, if someone requests “a vision system to detect pedestrians outside our store,” it’s hard for a developer to understand the boundary conditions. Is the system expected to work at night? What is the range of permissible camera angles? Is it expected to detect pedestrians who appear in the image even though they’re 100m away? But if the PM collects a handful of pictures and annotates them with the desired output, the meaning of “detect pedestrians” becomes concrete. An engineer can assess if the specification is technically feasible and if so, build toward it. Initially, the data might be obtained via a one-off, scrappy process, such as the PM walking around taking pictures and annotating them. Eventually, the data mix will shift to real-word data collected by a system running in production.