Dead time - Wikipedia

submited by
Style Pass
2021-06-08 02:00:07

For detection systems that record discrete events, such as particle and nuclear detectors, the dead time is the time after each event during which the system is not able to record another event.[1] An everyday life example of this is what happens when someone takes a photo using a flash - another picture cannot be taken immediately afterward because the flash needs a few seconds to recharge. In addition to lowering the detection efficiency, dead times can have other effects, such as creating possible exploits in quantum cryptography.[2]

The total dead time of a detection system is usually due to the contributions of the intrinsic dead time of the detector (for example the ion drift time in a gaseous ionization detector), of the analog front end (for example the shaping time of a spectroscopy amplifier) and of the data acquisition (the conversion time of the analog-to-digital converters and the readout and storage times).

The intrinsic dead time of a detector is often due to its physical characteristics; for example a spark chamber is "dead" until the potential between the plates recovers above a high enough value. In other cases the detector, after a first event, is still "live" and does produce a signal for the successive event, but the signal is such that the detector readout is unable to discriminate and separate them, resulting in an event loss or in a so-called "pile-up" event where, for example, a (possibly partial) sum of the deposited energies from the two events is recorded instead. In some cases this can be minimised by an appropriate design, but often only at the expense of other properties like energy resolution.

Leave a Comment