Flying ice cube - Wikipedia

submited by
Style Pass
2024-10-09 08:00:03

In molecular dynamics (MD) simulations, the flying ice cube effect is an artifact in which the energy of high-frequency fundamental modes is drained into low-frequency modes, particularly into zero-frequency motions such as overall translation and rotation of the system. The artifact derives its name from a particularly noticeable manifestation that arises in simulations of particles in vacuum, where the system being simulated acquires high linear momentum and experiences extremely damped internal motions, freezing the system into a single conformation reminiscent of an ice cube or other rigid body flying through space. The artifact is entirely a consequence of molecular dynamics algorithms and is wholly unphysical, since it violates the principle of equipartition of energy.[ 1]

The flying ice cube artifact arises from repeated rescalings of the velocities of the particles in the simulation system. Velocity rescaling is a means of imposing a thermostat on the system by multiplying the velocities of a system's particles by a factor after an integration timestep is completed, as is done by the Berendsen thermostat and the Bussi–Donadio–Parrinello thermostat.[ 2] These schemes fail when the rescaling is done to a kinetic energy distribution of an ensemble that is not invariant under microcanonical molecular dynamics; thus, the Berendsen thermostat (which rescales to the isokinetic ensemble) exhibits the artifact, while the Bussi–Donadio–Parrinello[ 2] thermostat (which rescales to the canonical ensemble) does not exhibit the artifact. Rescaling to an ensemble that is not invariant under microcanonical molecular dynamics results in a violation of the balance condition that is a requirement of Monte Carlo simulations (molecular dynamics simulations with velocity rescaling thermostats can be thought of as Monte Carlo simulations with molecular dynamics moves and velocity rescaling moves), which is the artifact's underlying reason.[ 3]

Leave a Comment