Of the many unconformities (gaps) observed in geological strata, the term Great Unconformity is frequently applied to either the unconformity observed

Great Unconformity - Wikipedia

submited by
Style Pass
2021-09-24 17:00:10

Of the many unconformities (gaps) observed in geological strata, the term Great Unconformity is frequently applied to either the unconformity observed by James Hutton in 1787 at Siccar Point in Scotland,[1][failed verification ] or that observed by John Wesley Powell in the Grand Canyon in 1869.[2] Both instances are exceptional examples of where the contacts between sedimentary strata and either sedimentary or crystalline strata of greatly different ages, origins, and structure represent periods of geologic time sufficiently long to raise great mountains and then erode them away.

Unconformities tend to reflect long-term changes in the pattern of the accumulation of sedimentary or igneous strata in low-lying areas (often ocean basins, such as the Gulf of Mexico or the North Sea, but also Bangladesh and much of Brazil), then being uplifted and eroded (such as the ongoing Himalayan orogeny, the older Laramide orogeny of the Rocky Mountains, or much older Appalachian (Alleghanian) and Ouachita orogenies), then subsequently subsiding, eventually to be buried under younger sediments. The intervening periods of tectonic uplift are generally periods of mountain building, often due to the collision of tectonic plates. The "great" unconformities of regional or continental scale (in both geography and chronology) are associated with either global changes in eustatic sea level or the supercontinent cycle, the periodic merger of all the continents into one approximately every 500 million years.

Hutton's Unconformity at Siccar Point, in county of Berwickshire on the east coast of Scotland, is an angular unconformity that consists of gently dipping, reddish, Upper Devonian and Lower Carboniferous breccias, sandstones, and conglomerates of the Old Red Sandstone overlying deeply eroded, near-vertical, greyish, Silurian (Llandovery) greywackes and shales. The Llandovery greywackes and graptolite-bearing shales of the Gala Group were deposited by turbidity currents in a deep sea environment about 425 million years ago. The overlying Devonian strata were deposited by rivers and streams about 345 million years ago. Thus, this unconformity reflects a gap of about 80 million years during which deep sea sediments were lithified, folded, and uplifted; later deeply eroded and weathered subaerially; and finally buried by river and stream sediments.[1][3][4]

Leave a Comment