Visual calculus - Wikipedia

submited by
Style Pass
2024-02-13 02:00:11

Visual calculus, invented by Mamikon Mnatsakanian (known as Mamikon), is an approach to solving a variety of integral calculus problems.[1] Many problems that would otherwise seem quite difficult yield to the method with hardly a line of calculation, often reminiscent of what Martin Gardner called "aha! solutions" or Roger Nelsen a proof without words.[2][3]

Mamikon devised his method in 1959 while an undergraduate, first applying it to a well-known geometry problem: find the area of a ring (annulus), given the length of a chord tangent to the inner circumference. Perhaps surprisingly, no additional information is needed; the solution does not depend on the ring's inner and outer dimensions.

The traditional approach involves algebra and application of the Pythagorean theorem. Mamikon's method, however, envisions an alternate construction of the ring: first the inner circle alone is drawn, then a constant-length tangent is made to travel along its circumference, "sweeping out" the ring as it goes.

Now if all the (constant-length) tangents used in constructing the ring are translated so that their points of tangency coincide, the result is a circular disk of known radius (and easily computed area). Indeed, since the inner circle's radius is irrelevant, one could just as well have started with a circle of radius zero (a point)—and sweeping out a ring around a circle of zero radius is indistinguishable from simply rotating a line segment about one of its endpoints and sweeping out a disk.