Alcor Position Statement on Aldehyde-Stabilized Cryopreservation – Fight Aging!

submited by
Style Pass
2021-06-10 20:30:08

Cryonics provider Alcor have today published their position on aldehyde-stabilized cryopreservation. This is the vitrification methodology used by 21st Century Medicine to win the first stage of the Brain Preservation Prize earlier this month. The researchers demonstrated exceptional preservation of fine structure in mammalian brains, which by the present consensus in neurobiology is a compelling argument that the data of the mind encoded in that structure is also preserved. This in turn lends weight of validation to the existing methods of vitrification used by the cryonics industry, and can be placed alongside last year's results showing preservation of memory in vitrified and restored nematode worms.

It is worth noting that end goals are not aligned among advocates for cryopreservation and other forms of tissue preservation that can in principle maintain the data of the mind. This is important because end goals steer today's decisions on research, development, and advocacy, such as the type of approach used to preserve brain tissue. There is a strong contingent, the Brain Preservation Foundation founders among their number, that sees cryopreservation as a step on the road towards mind uploading. Their expectation is that preserved minds will be scanned and run in emulation, the original cryopreserved brain discarded or destroyed in the process. From this viewpoint, tissue restoration isn't even a question, and it certainly isn't a goal to optimize for. All optimization of technique should go towards provable preservation.

Those of us who think that a copy is not the self, and that the original tissue must be restored in order for a preserved individual to actually survive, have different and arguably harder goals. Not only do we want provable preservation of neural structure but we also want to make life easier for those who will one day work to restore the archives of cryopreserved brains. In this I find myself on the fence; I'm not certain that the additional chemical entanglements of, for example, aldehyde fixation raise the bar that much in comparison to what we already know future restoration requires. Molecular nanotechnology, a full understanding of brain biochemistry, and absolute control over cellular biochemistry are the plausible requirements at the high level, and communities or entities capable of deploying that mix of capabilities shouldn't be much daunted by whatever we have done today, provided that we succeeded in preserving the structure and did not destroy the biological macromolecules involved.

Leave a Comment