Fukuoka, Japan— Mi

Building roots in glass, a bio-inspired approach to creating 3D microvascular networks using plants and fung

submited by
Style Pass
2024-11-24 20:00:07

Fukuoka, Japan— Microfluidic technology has become increasingly important in many scientific fields such as regenerative medicine, microelectronics, and environmental science. However, conventional microfabrication techniques face limitations in scale and in the construction of complex networks. These hurdles are compounded when it comes to building more intricate 3D microfluidic networks.

Now, researchers from Kyushu University have developed a new and convenient technique for building such complex 3D microfluidic networks. Their tool? Plants and fungi. The team developed a ‘soil’ medium using nanoparticles of glass (silica) and a cellulose based binding agent, then allowed plants and fungi to grow roots into it. After the plants were removed, the glass was left with a complex 3D microfluidic network of micrometer-sized hollow holes where the roots once were.

The new method can also be utilized for observing and preserving 3D biological structures that are typically difficult to study in soil, opening new opportunities for research in plant and fungal biology. Their findings were published in the journal Scientific Reports.

Leave a Comment