Beyond the Centralized Mindset

submited by
Style Pass
2021-06-26 13:30:08

Mitchel Resnick Epistemology and Learning Group The Media Laboratory Massachusetts Institute of Technology 20 Ames Street Room E15-312 Cambridge, MA 02139 617-253-9783 617-253-6215 (fax) mres@media.mit.edu Published in Journal of the Learning Sciences, vol. 5, no. 1, p. 1-22.

In recent years, there has been a growing fascination with decentralized systems and self-organizing phenomena. Increasingly, people are choosing decentralized models for the organizations and technologies that they construct in the world, and for the theories that they construct about the world. But even as decentralized ideas spread through the culture, there is a deep-seated resistance to such ideas. In trying to understand patterns in the world, people often assume centralized control where none exists (for example, assuming that a "leader bird" guides the rest of the flock). To probe how people think about decentralized systems, and to help them develop new ways of thinking about such systems, I developed a programmable modeling environment (called StarLogo) with which people can easily create and experiment with decentralized systems. StarLogo allows users to control the actions and interactions of thousands of artificial "creatures" on the computer screen. I describe three StarLogo projects created by high-school students. Based on my observations of these (and other) students, I analyze the nature of the centralized mindset, and I discuss how people, through engagement with new types of computational tools and activities, can begin to move beyond the centralized mindset.

During the past decade, there has been a surge of scientific interest in the so-called "sciences of complexity"--the investigation of how complex phenomena can arise from simple interactions among simple parts. New research projects on chaos, self-organization, adaptive systems, nonlinear dynamics, and artificial life are all part of this growing interest in complex systems. The interest has even spread from the scientific community to popular culture, with the publication of best-selling books about research into complex systems (e.g., Gleick, 1987; Pagels, 1988; Levy, 1992; Waldrop, 1992).

Leave a Comment