Nowhere on Earth can we fully replicate the conditions on Mars. Special facilities can re-create certain elements with enough fidelity to test specifi

Unlocking the Martian Skies – Using Ingenuity as a Martian Testbed for Future Rotorcraft - NASA Mars

submited by
Style Pass
2024-03-29 18:00:07

Nowhere on Earth can we fully replicate the conditions on Mars. Special facilities can re-create certain elements with enough fidelity to test specific scenarios, but each is limited, leading to a plethora of platforms and scenarios required to span the conditions of Mars. In our prior post, “The Right Stuff,” the focus was using Ingenuity on Mars to test our macro capabilities: flying higher and faster, landing at various speeds, and generally expanding the flight envelope to retire the associated risk for future Martian rotorcraft. The holy grail, however, is understanding the microscale – not just proving Ingenuity can fly faster but knowing how it flies faster.

To answer the question, the NASA JPL Ingenuity team worked with our aerodynamics partners at NASA Ames to design, validate, and execute a Sys-ID test campaign. “Sys-ID” refers to a process called system identification, a data-driven method for understanding the complex behavior of a system by studying how specific inputs impact the motion of the vehicle.

In this case, a frequency sweep (sine wave with varying frequency) was injected into the control input to cause microscopic “nodding” of the vehicle in forward flight. The aerospace industry has long relied on these methods to characterize complex vehicle dynamics and validate simulation models. The same methods were used during ground testing of Ingenuity on Earth, but as previously noted, there was no comprehensive test environment on Earth to conduct full system testing like traditional Earth rotorcraft endure.

Leave a Comment