At Netflix we care about video quality, and we care about measuring video quality accurately at scale. Our method, Video Multimethod Assessment Fusion

Toward A Practical Perceptual Video Quality Metric

submited by
Style Pass
2024-11-05 06:30:06

At Netflix we care about video quality, and we care about measuring video quality accurately at scale. Our method, Video Multimethod Assessment Fusion (VMAF), seeks to reflect the viewer’s perception of our streaming quality. We are open-sourcing this tool and invite the research community to collaborate with us on this important project.

We strive to provide our members with a great viewing experience: smooth video playback, free of annoying picture artifacts. A significant part of this endeavor is delivering video streams with the best perceptual quality possible, given the constraints of the network bandwidth and viewing device. We continuously work towards this goal through multiple efforts.

First, we innovate in the area of video encoding. Streaming video requires compression using standards, such as H.264/AVC, HEVC and VP9, in order to stream at reasonable bitrates. When videos are compressed too much or improperly, these techniques introduce quality impairments, known as compression artifacts. Experts refer to them as “blocking”, “ringing” or “mosquito noise”, but for the typical viewer, the video just doesn’t look right. For this reason, we regularly compare codec vendors on compression efficiency, stability and performance, and integrate the best solutions in the market. We evaluate the different video coding standards to ensure that we remain at the cutting-edge of compression technology. For example, we run comparisons among H.264/AVC, HEVC and VP9, and in the near future we will experiment on the next-generation codecs developed by the Alliance for Open Media (AOM) and the Joint Video Exploration Team (JVET). Even within established standards we continue to experiment on recipe decisions (see Per-Title Encoding Optimization project) and rate allocation algorithms to fully utilize existing toolsets.

We encode the Netflix video streams in a distributed cloud-based media pipeline, which allows us to scale to meet the needs of our business. To minimize the impact of bad source deliveries, software bugs and the unpredictability of cloud instances (transient errors), we automate quality monitoring at various points in our pipeline. Through this monitoring, we seek to detect video quality issues at ingest and at every transform point in our pipeline.

Leave a Comment