Previous image            Next image

Tunable ultrasound propagation in microscale metamaterials

submited by
Style Pass
2024-11-23 21:00:10

Previous image Next image

Acoustic metamaterials — architected materials that have tailored geometries designed to control the propagation of acoustic or elastic waves through a medium — have been studied extensively through computational and theoretical methods. Physical realizations of these materials to date have been restricted to large sizes and low frequencies.

“The multifunctionality of metamaterials — being simultaneously lightweight and strong while having tunable acoustic properties — make them great candidates for use in extreme-condition engineering applications,” explains Carlos Portela, the Robert N. Noyce Career Development Chair and assistant professor of mechanical engineering at MIT. “But challenges in miniaturizing and characterizing acoustic metamaterials at high frequencies have hindered progress towards realizing advanced materials that have ultrasonic-wave control capabilities.”

A new study coauthored by Portela; Rachel Sun, Jet Lem, and Yun Kai of the MIT Department of Mechanical Engineering (MechE); and Washington DeLima of the U.S. Department of Energy Kansas City National Security Campus presents a design framework for controlling ultrasound wave propagation in microscopic acoustic metamaterials. A paper on the work, “Tailored Ultrasound Propagation in Microscale Metamaterials via Inertia Design,” was recently published in the journal Science Advances. 

Leave a Comment
Related Posts