For over a century, the neuro- and pathophysiological, behavioral, and cognitive correlates of consciousness have been an active field of theoretical considerations and empirical research in a wide range of modern disciplines. Conscious cognitive processing of information cannot be observed directly, but might be inferred from step-like discontinuities in learning performance or sudden insight-based improvements in problem solving behavior. It is assumed that a sudden step of knowledge associated with insight requires a creative reorganization of mental representations of task- or problem-relevant information and the restructuration of the task, respectively problem to overcome an cognitive dead-end or impasse. Discontinuities in learning performance or problem solving after an insight event can be used as time-tags to capture the time window in which conscious cognitive information processing must have taken place. According to the platform theory of conscious cognitive information processing, the reorganization and restructuration processes, require the maintenance of task- or problem-relevant information in working memory for the operation of executive functions on these mental representations. Electrophysiological evidence suggests that the reorganization and restructuration processes in working memory, that precede insight-based problem solutions are accompanied by an increase in the power of gamma oscillations in cortical areas including the prefrontal cortex. Empirical evidence and theoretical assumptions argue for an involvement of gap junction channels and connexin hemichannels in cortical gamma-oscillations and working memory processes. Discontinuities in learning or problem solving performance might be used as time-tags to investigate the implication of gap junction channels and hemichannels in conscious cognitive processing.
Detailed information on the neurophysiological and molecular mechanisms, as well as regarding the behavioral correlates of consciousness is still scarce (Dere et al., 2021; Zlomuzica and Dere, 2022). This gap of knowledge is even more astonishing in that the keyword “consciousness” entered into the online scientific publication database PubMed returns more than 59.000 hits. Nevertheless, there is no general definition in sight that would be unanimously accepted by all the different disciplines (Dere et al., 2021; Zlomuzica and Dere, 2022). Owed to this conceptual vacuum, the measurement of cognitive, behavioral and neurophysiological correlates of consciousness in animals and humans has been an extremely challenging task. This an untenable situation, if one considers that altered consciousness (e.g., lack of insight into illness, tunnel vision, altered attention, perception and biased processing of disease-relevant stimuli) is a frequent symptom (and sometimes obstacle for successful treatment) among mental, neurological, and psychiatric diseases (Bob et al., 2016; Dere et al., 2021; Zlomuzica et al., 2022; Zlomuzica and Dere, 2022; Martin, 2023; Stefanelli, 2023). However, due to the conceptual difficulty indicated above, alterations in consciousness as a clinical symptom is usually neglected (except in severe cases subsumed under the term disorders of consciousness) where the patient is no longer responsive or oriented in terms of time, location and personal information (Edlow et al., 2021).